Symplectic shifted tableaux and deformations of Weyl's denominator formula for $sp(2n)$
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 269-300.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A determinantal expansion due to Okada is used to derive both a deformation of Weyl's denominator formula for the Lie algebra $s$p($2 n$) of the symplectic group and a further generalisation involving a product of the deformed denominator with a deformation of flagged characters of $s$p($2 n$). In each case the relevant expansion is expressed in terms of certain shifted $s$p($2 n$)-standard tableaux. It is then re-expressed, first in terms of monotone patterns and then in terms of alternating sign matrices.
Keywords: alternating sign matrices, symplectic shifted tableau, monotone triangle, Weyl's denominator formula
@article{JAC_2002__16_3_a1,
     author = {Hamel, A. M. and King, R. C.},
     title = {Symplectic shifted tableaux and deformations of {Weyl's} denominator formula for $sp(2n)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {269--300},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a1/}
}
TY  - JOUR
AU  - Hamel, A. M.
AU  - King, R. C.
TI  - Symplectic shifted tableaux and deformations of Weyl's denominator formula for $sp(2n)$
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 269
EP  - 300
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a1/
LA  - en
ID  - JAC_2002__16_3_a1
ER  - 
%0 Journal Article
%A Hamel, A. M.
%A King, R. C.
%T Symplectic shifted tableaux and deformations of Weyl's denominator formula for $sp(2n)$
%J Journal of Algebraic Combinatorics
%D 2002
%P 269-300
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a1/
%G en
%F JAC_2002__16_3_a1
Hamel, A. M.; King, R. C. Symplectic shifted tableaux and deformations of Weyl's denominator formula for $sp(2n)$. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 269-300. http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a1/