Lie representations and an algebra containing Solomon's.
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 301-314.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce and study a Hopf algebra containing the descent algebra as a sub-Hopf-algebra. It has the main algebraic properties of the descent algebra, and more: it is a sub-Hopf-algebra of the direct sum of the symmetric group algebras; it is closed under the corresponding inner product; it is cocommutative, so it is an enveloping algebra; it contains all Lie idempotents of the symmetric group algebras. Moreover, its primitive elements are exactly the Lie elements which lie in the symmetric group algebras.
Keywords: descent algebra, Hopf algebra, Lie idempotent, symmetric group algebras, quasi-symmetric functions, Lie elements
@article{JAC_2002__16_3_a0,
     author = {Patras, Fr\'ed\'eric and Reutenauer, Christophe},
     title = {Lie representations and an algebra containing {Solomon's.}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {301--314},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a0/}
}
TY  - JOUR
AU  - Patras, Frédéric
AU  - Reutenauer, Christophe
TI  - Lie representations and an algebra containing Solomon's.
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 301
EP  - 314
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a0/
LA  - en
ID  - JAC_2002__16_3_a0
ER  - 
%0 Journal Article
%A Patras, Frédéric
%A Reutenauer, Christophe
%T Lie representations and an algebra containing Solomon's.
%J Journal of Algebraic Combinatorics
%D 2002
%P 301-314
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a0/
%G en
%F JAC_2002__16_3_a0
Patras, Frédéric; Reutenauer, Christophe. Lie representations and an algebra containing Solomon's.. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 301-314. http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a0/