Applications of symmetric functions to cycle and increasing subsequence structure after shuffles
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 2, pp. 165-194.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using symmetric function theory, we study the cycle structure and increasing subsequence structure of permutations after iterations of various shuffling methods. We emphasize the role of Cauchy type identities and variations of the Robinson-Schensted-Knuth correspondence.
Keywords: card shuffling, RSK correspondence, cycle index, increasing subsequence
@article{JAC_2002__16_2_a2,
     author = {Fulman, Jason},
     title = {Applications of symmetric functions to cycle and increasing subsequence structure after shuffles},
     journal = {Journal of Algebraic Combinatorics},
     pages = {165--194},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a2/}
}
TY  - JOUR
AU  - Fulman, Jason
TI  - Applications of symmetric functions to cycle and increasing subsequence structure after shuffles
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 165
EP  - 194
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a2/
LA  - en
ID  - JAC_2002__16_2_a2
ER  - 
%0 Journal Article
%A Fulman, Jason
%T Applications of symmetric functions to cycle and increasing subsequence structure after shuffles
%J Journal of Algebraic Combinatorics
%D 2002
%P 165-194
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a2/
%G en
%F JAC_2002__16_2_a2
Fulman, Jason. Applications of symmetric functions to cycle and increasing subsequence structure after shuffles. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 2, pp. 165-194. http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a2/