Singular polynomials of generalized Kasteleyn matrices
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 2, pp. 195-207.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Kasteleyn counted the number of domino tilings of a rectangle by considering a mutation of the adjacency matrix: a Kasteleyn matrix K. In this paper we present a generalization of Kasteleyn matrices and a combinatorial interpretation for the coefficients of the characteristic polynomial of $K$K* (which we call the singular polynomial), where $K$ is a generalized Kasteleyn matrix for a planar bipartite graph. We also present a $q$-version of these ideas and a few results concerning tilings of special regions such as rectangles.
Keywords: domino tilings, dimers, kasteleyn matrix, singular values
@article{JAC_2002__16_2_a1,
     author = {Saldanha, Nicolau C.},
     title = {Singular polynomials of generalized {Kasteleyn} matrices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a1/}
}
TY  - JOUR
AU  - Saldanha, Nicolau C.
TI  - Singular polynomials of generalized Kasteleyn matrices
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 195
EP  - 207
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a1/
LA  - en
ID  - JAC_2002__16_2_a1
ER  - 
%0 Journal Article
%A Saldanha, Nicolau C.
%T Singular polynomials of generalized Kasteleyn matrices
%J Journal of Algebraic Combinatorics
%D 2002
%P 195-207
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a1/
%G en
%F JAC_2002__16_2_a1
Saldanha, Nicolau C. Singular polynomials of generalized Kasteleyn matrices. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/JAC_2002__16_2_a1/