Designs in Grassmannian spaces and lattices
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce the notion of a $t$-design on the Grassmann manifold $G _{ m, n}$ mathcalG_m,n of the $m$-subspaces of the Euclidean space $\mathbb R$ mathbbR $^{ n }$. It generalizes the notion of antipodal spherical design which was introduced by P. Delsarte, J.-M. Goethals and J.-J. Seidel. We characterize the finite subgroups of the orthogonal group which have the property that all its orbits are $t$-designs. Generalizing a result due to B. Venkov, we prove that, if the minimal $m$-sections of a lattice $L$ form a 4-design, then $L$ is a local maximum for the Rankin function $gamma_{ n,m }$.
Keywords: lattice, Grassmann manifold, orthogonal group, zonal function
@article{JAC_2002__16_1_a6,
     author = {Bachoc, Christine and Coulangeon, Renaud and Nebe, Gabriele},
     title = {Designs in {Grassmannian} spaces and lattices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a6/}
}
TY  - JOUR
AU  - Bachoc, Christine
AU  - Coulangeon, Renaud
AU  - Nebe, Gabriele
TI  - Designs in Grassmannian spaces and lattices
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 5
EP  - 19
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a6/
LA  - en
ID  - JAC_2002__16_1_a6
ER  - 
%0 Journal Article
%A Bachoc, Christine
%A Coulangeon, Renaud
%A Nebe, Gabriele
%T Designs in Grassmannian spaces and lattices
%J Journal of Algebraic Combinatorics
%D 2002
%P 5-19
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a6/
%G en
%F JAC_2002__16_1_a6
Bachoc, Christine; Coulangeon, Renaud; Nebe, Gabriele. Designs in Grassmannian spaces and lattices. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a6/