Derangements and tensor powers of adjoint modules for $\frak{sl}_n$
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We obtain the decomposition of the tensor space $\mathfrak s\mathfrak l _{ n} ^{ \"A k}$ mathfraksmathfrakl_n^ otimesk as a module for $\mathfrak s\mathfrak l _{ n}$ mathfraksmathfrakl_n , find an explicit formula for the multiplicities of its irreducible summands, and (when $n C$ mathcalC = $End _mathfraksmathfrakl _ n $ textEnd_mathfraksmathfrakl_n ( $\mathfrak s\mathfrak l _{ n} ^{ \"A k}$ mathfraksmathfrakl_n^ $\otimes k$ ) and its representations. The multiplicities of the irreducible summands are derangement numbers in several important instances, and the dimension of $C$ mathcalC is given by the number of derangements of a set of $2 k$ elements.
Keywords: derangements, centralizer algebras, walled Brauer algebras, tensor powers, adjoint representation
@article{JAC_2002__16_1_a4,
     author = {Benkart, Georgia and Doty, Stephen},
     title = {Derangements and tensor powers of adjoint modules for $\frak{sl}_n$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a4/}
}
TY  - JOUR
AU  - Benkart, Georgia
AU  - Doty, Stephen
TI  - Derangements and tensor powers of adjoint modules for $\frak{sl}_n$
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 31
EP  - 42
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a4/
LA  - en
ID  - JAC_2002__16_1_a4
ER  - 
%0 Journal Article
%A Benkart, Georgia
%A Doty, Stephen
%T Derangements and tensor powers of adjoint modules for $\frak{sl}_n$
%J Journal of Algebraic Combinatorics
%D 2002
%P 31-42
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a4/
%G en
%F JAC_2002__16_1_a4
Benkart, Georgia; Doty, Stephen. Derangements and tensor powers of adjoint modules for $\frak{sl}_n$. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a4/