Summary: We explicitly determine all of the transitive groups of degree $p ^{2}, p$ a prime, whose Sylow $p$-subgroup is not isomorphic to the wreath product $\mathbb Z _{ p} \wr \mathbb Z _{ p}$ mathbbZ_p $\wr $mathbbZ_p . Furthermore, we provide a general description of the transitive groups of degree $p ^{2}$ whose Sylow $p$-subgroup is isomorphic to $\mathbb Z _{ p} \wr \mathbb Z _{ p}$ mathbbZ_p $\wr $mathbbZ_p , and explicitly determine most of them. As applications, we solve the Cayley Isomorphism problem for Cayley objects of an abelian group of order $p ^{2}$, explicitly determine the full automorphism group of Cayley graphs of abelian groups of order $p ^{2}$, and find all nonnormal Cayley graphs of order $p ^{2}$.
@article{JAC_2002__16_1_a3,
author = {Dobson, Edward and Witte, Dave},
title = {Transitive permutation groups of prime-squared degree},
journal = {Journal of Algebraic Combinatorics},
pages = {43--69},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a3/}
}
TY - JOUR
AU - Dobson, Edward
AU - Witte, Dave
TI - Transitive permutation groups of prime-squared degree
JO - Journal of Algebraic Combinatorics
PY - 2002
SP - 43
EP - 69
VL - 16
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a3/
LA - en
ID - JAC_2002__16_1_a3
ER -
%0 Journal Article
%A Dobson, Edward
%A Witte, Dave
%T Transitive permutation groups of prime-squared degree
%J Journal of Algebraic Combinatorics
%D 2002
%P 43-69
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a3/
%G en
%F JAC_2002__16_1_a3
Dobson, Edward; Witte, Dave. Transitive permutation groups of prime-squared degree. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 43-69. http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a3/