Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 71-81.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a bound for codes over an arbitrary alphabet in a non-Hamming metric and define MDS codes as codes meeting this bound. We show that MDS codes are precisely those codes that are uniformly distributed and show that their weight enumerators based on this metric are uniquely determined.
Keywords: MDS codes, uniform distributions
@article{JAC_2002__16_1_a2,
     author = {Dougherty, Steven T. and Skriganov, Maxim M.},
     title = {Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets},
     journal = {Journal of Algebraic Combinatorics},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a2/}
}
TY  - JOUR
AU  - Dougherty, Steven T.
AU  - Skriganov, Maxim M.
TI  - Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 71
EP  - 81
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a2/
LA  - en
ID  - JAC_2002__16_1_a2
ER  - 
%0 Journal Article
%A Dougherty, Steven T.
%A Skriganov, Maxim M.
%T Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets
%J Journal of Algebraic Combinatorics
%D 2002
%P 71-81
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a2/
%G en
%F JAC_2002__16_1_a2
Dougherty, Steven T.; Skriganov, Maxim M. Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a2/