Lyubeznik's resolution and rooted complexes
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 97-101.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We describe a new family of free resolutions for a monomial ideal $I$, generalizing Lyubeznik"s construction. These resolutions are cellular resolutions supported on the rooted complexes of the lcm-lattice of $I$. Our resolutions are minimal for the matroid ideal of a finite projective space.
Keywords: cellular resolutions, lcm-lattice, geometric lattice, matroid ideal
@article{JAC_2002__16_1_a0,
     author = {Novik, Isabella},
     title = {Lyubeznik's resolution and rooted complexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {97--101},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a0/}
}
TY  - JOUR
AU  - Novik, Isabella
TI  - Lyubeznik's resolution and rooted complexes
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 97
EP  - 101
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a0/
LA  - en
ID  - JAC_2002__16_1_a0
ER  - 
%0 Journal Article
%A Novik, Isabella
%T Lyubeznik's resolution and rooted complexes
%J Journal of Algebraic Combinatorics
%D 2002
%P 97-101
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a0/
%G en
%F JAC_2002__16_1_a0
Novik, Isabella. Lyubeznik's resolution and rooted complexes. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 1, pp. 97-101. http://geodesic.mathdoc.fr/item/JAC_2002__16_1_a0/