A combinatorial algorithm related to the geometry of the moduli space of pointed curves
Journal of Algebraic Combinatorics, Tome 15 (2002) no. 3, pp. 211-221.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: As pointed out in Arbarello and Cornalba ( J. Alg. Geom. 5 (1996), 705-749), a theorem due to Di Francesco, Itzykson, and Zuber (see Di Francesco, Itzykson, and Zuber, Commun. Math. Phys. 151 (1993), 193-219) should yield new relations among cohomology classes of the moduli space of pointed curves. The coefficients appearing in these new relations can be determined by the algorithm we introduce in this paper.
Keywords: Schur Q-polynomials, projective representations, moduli space of curves
@article{JAC_2002__15_3_a6,
     author = {Bini, G.},
     title = {A combinatorial algorithm related to the geometry of the moduli space of pointed curves},
     journal = {Journal of Algebraic Combinatorics},
     pages = {211--221},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a6/}
}
TY  - JOUR
AU  - Bini, G.
TI  - A combinatorial algorithm related to the geometry of the moduli space of pointed curves
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 211
EP  - 221
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a6/
LA  - en
ID  - JAC_2002__15_3_a6
ER  - 
%0 Journal Article
%A Bini, G.
%T A combinatorial algorithm related to the geometry of the moduli space of pointed curves
%J Journal of Algebraic Combinatorics
%D 2002
%P 211-221
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a6/
%G en
%F JAC_2002__15_3_a6
Bini, G. A combinatorial algorithm related to the geometry of the moduli space of pointed curves. Journal of Algebraic Combinatorics, Tome 15 (2002) no. 3, pp. 211-221. http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a6/