The parameters of bipartite $Q$-polynomial distance-regular graphs
Journal of Algebraic Combinatorics, Tome 15 (2002) no. 3, pp. 223-229.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $Gamma$ denote a bipartite distance-regular graph with diameter $Dge$ 3 and valency $kge$ 3. Suppose $theta _{0}, theta _{1}, \dots , theta_{ D }$ is a $Q$-polynomial ordering of the eigenvalues of $Gamma$. This sequence is known to satisfy the recurrence $theta_{ i - 1} - betatheta_{ i } + theta_{ i + 1} = 0 (0 > i > D)$, for some real scalar $beta$. Let $q$ denote a complex scalar such that $q + q ^{-1} = beta$. Bannai and Ito have conjectured that $q$ is real if the diameter $D$ is sufficiently large. We settle this conjecture in the bipartite case by showing that $q$ is real if the diameter $Dge$ 4. Moreover, if $D = 3$, then $q$ is not real if and only if $theta _{1}$ is the second largest eigenvalue and the pair ( $mgr, k$) is one of the following: (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), or (2, 5). We observe that each of these pairs has a unique realization by a known bipartite distance-regular graph of diameter 3.
Keywords: distance-regular graph, bipartite, association scheme, $P$-polynomial, $Q$-polynomial
@article{JAC_2002__15_3_a5,
     author = {Caughman, John S.IV},
     title = {The parameters of bipartite $Q$-polynomial distance-regular graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a5/}
}
TY  - JOUR
AU  - Caughman, John S.IV
TI  - The parameters of bipartite $Q$-polynomial distance-regular graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 223
EP  - 229
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a5/
LA  - en
ID  - JAC_2002__15_3_a5
ER  - 
%0 Journal Article
%A Caughman, John S.IV
%T The parameters of bipartite $Q$-polynomial distance-regular graphs
%J Journal of Algebraic Combinatorics
%D 2002
%P 223-229
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a5/
%G en
%F JAC_2002__15_3_a5
Caughman, John S.IV. The parameters of bipartite $Q$-polynomial distance-regular graphs. Journal of Algebraic Combinatorics, Tome 15 (2002) no. 3, pp. 223-229. http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a5/