Minimal covers of $Q^+(2n+1,q)$ by $(n-1)$-dimensional subspaces
Journal of Algebraic Combinatorics, Tome 15 (2002) no. 3, pp. 231-240.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A $t$-cover of a quadric $Q$ Q is a set $C$ of $t$-dimensional subspaces contained in $Q$ Q such that every point of $Q$ Q is contained in at least one element of $C$. We consider $( n - 1)$-covers of the hyperbolic quadric $Q ^{+}(2 n + 1, q)$. We show that such a cover must have at least $q ^{ n + 1} + 2 q + 1$ elements, give an example of this size for even $q$ and describe what covers of this size should look like.
Keywords: covers, partial spreads, quadrics
@article{JAC_2002__15_3_a4,
     author = {Eisfeld, J. and Storme, L. and Sziklai, P.},
     title = {Minimal covers of $Q^+(2n+1,q)$ by $(n-1)$-dimensional subspaces},
     journal = {Journal of Algebraic Combinatorics},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a4/}
}
TY  - JOUR
AU  - Eisfeld, J.
AU  - Storme, L.
AU  - Sziklai, P.
TI  - Minimal covers of $Q^+(2n+1,q)$ by $(n-1)$-dimensional subspaces
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 231
EP  - 240
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a4/
LA  - en
ID  - JAC_2002__15_3_a4
ER  - 
%0 Journal Article
%A Eisfeld, J.
%A Storme, L.
%A Sziklai, P.
%T Minimal covers of $Q^+(2n+1,q)$ by $(n-1)$-dimensional subspaces
%J Journal of Algebraic Combinatorics
%D 2002
%P 231-240
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a4/
%G en
%F JAC_2002__15_3_a4
Eisfeld, J.; Storme, L.; Sziklai, P. Minimal covers of $Q^+(2n+1,q)$ by $(n-1)$-dimensional subspaces. Journal of Algebraic Combinatorics, Tome 15 (2002) no. 3, pp. 231-240. http://geodesic.mathdoc.fr/item/JAC_2002__15_3_a4/