A characterisation of the generalized quadrangle $Q(5,q)$ using cohomology
Journal of Algebraic Combinatorics, Tome 15 (2002) no. 2, pp. 107-125.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: If a GQ $S O _{ x}$ O_x of $S Q$ Q (4,q),q even, and $O _{ x}$ O_x is an elliptic quadric for each $X Q$ Q (5,q). In this paper we provide a single proof for the $q$ odd and $q$ even cases by establishing a link between the geometry involved and the first cohomology group of a related simplicial complex.
Keywords: generalized quadrangle, subquadrangle, cohomology, ovoid
@article{JAC_2002__15_2_a3,
     author = {Brown, Matthew R.},
     title = {A characterisation of the generalized quadrangle $Q(5,q)$ using cohomology},
     journal = {Journal of Algebraic Combinatorics},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a3/}
}
TY  - JOUR
AU  - Brown, Matthew R.
TI  - A characterisation of the generalized quadrangle $Q(5,q)$ using cohomology
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 107
EP  - 125
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a3/
LA  - en
ID  - JAC_2002__15_2_a3
ER  - 
%0 Journal Article
%A Brown, Matthew R.
%T A characterisation of the generalized quadrangle $Q(5,q)$ using cohomology
%J Journal of Algebraic Combinatorics
%D 2002
%P 107-125
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a3/
%G en
%F JAC_2002__15_2_a3
Brown, Matthew R. A characterisation of the generalized quadrangle $Q(5,q)$ using cohomology. Journal of Algebraic Combinatorics, Tome 15 (2002) no. 2, pp. 107-125. http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a3/