Spectral characterizations of some distance-regular graphs
Journal of Algebraic Combinatorics, Tome 15 (2002) no. 2, pp. 189-202.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: When can one see from the spectrum of a graph whether it is distance-regular or not? We give some new results for when this is the case. As a consequence we find (among others) that the following distance-regular graphs are uniquely determined by their spectrum: The collinearity graphs of the generalized octagons of order (2,1), (3,1) and (4,1), the Biggs-Smith graph, the $M _{22}$ graph, and the coset graphs of the doubly truncated binary Golay code and the extended ternary Golay code.
Keywords: distance regular graphs, eigenvalues, cospectral graphs
@article{JAC_2002__15_2_a0,
     author = {van Dam, Edwin R. and Haemers, Willem H.},
     title = {Spectral characterizations of some distance-regular graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {189--202},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a0/}
}
TY  - JOUR
AU  - van Dam, Edwin R.
AU  - Haemers, Willem H.
TI  - Spectral characterizations of some distance-regular graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 189
EP  - 202
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a0/
LA  - en
ID  - JAC_2002__15_2_a0
ER  - 
%0 Journal Article
%A van Dam, Edwin R.
%A Haemers, Willem H.
%T Spectral characterizations of some distance-regular graphs
%J Journal of Algebraic Combinatorics
%D 2002
%P 189-202
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a0/
%G en
%F JAC_2002__15_2_a0
van Dam, Edwin R.; Haemers, Willem H. Spectral characterizations of some distance-regular graphs. Journal of Algebraic Combinatorics, Tome 15 (2002) no. 2, pp. 189-202. http://geodesic.mathdoc.fr/item/JAC_2002__15_2_a0/