A generalization of the Kostka-Foulkes polynomials
Journal of Algebraic Combinatorics, Tome 15 (2002) no. 1, pp. 27-69.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Combinatorial objects called rigged configurations give rise to $q$-analogues of certain Littlewood-Richardson coefficients. The Kostka-Foulkes polynomials and two-column Macdonald-Kostka polynomials occur as special cases. Conjecturally these polynomials coincide with the Poincaré polynomials of isotypic components of certain graded $GL( n)$-modules supported in a nilpotent conjugacy class closure in $gl( n)$.
Keywords: generalized Kostka polynomials, rigged configurations, littewood-Richardson tableaux, catabolizable tableaux
@article{JAC_2002__15_1_a1,
     author = {Kirillov, Anatol N. and Shimozono, Mark},
     title = {A generalization of the {Kostka-Foulkes} polynomials},
     journal = {Journal of Algebraic Combinatorics},
     pages = {27--69},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__15_1_a1/}
}
TY  - JOUR
AU  - Kirillov, Anatol N.
AU  - Shimozono, Mark
TI  - A generalization of the Kostka-Foulkes polynomials
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 27
EP  - 69
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__15_1_a1/
LA  - en
ID  - JAC_2002__15_1_a1
ER  - 
%0 Journal Article
%A Kirillov, Anatol N.
%A Shimozono, Mark
%T A generalization of the Kostka-Foulkes polynomials
%J Journal of Algebraic Combinatorics
%D 2002
%P 27-69
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__15_1_a1/
%G en
%F JAC_2002__15_1_a1
Kirillov, Anatol N.; Shimozono, Mark. A generalization of the Kostka-Foulkes polynomials. Journal of Algebraic Combinatorics, Tome 15 (2002) no. 1, pp. 27-69. http://geodesic.mathdoc.fr/item/JAC_2002__15_1_a1/