Linear point sets and Rédei type $k$-blocking sets in $\mathrm{PG}(n,q)$
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 3, pp. 221-228.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, $k$-blocking sets in $PG( n, q)$, being of Rédei type, are investigated. A standard method to construct Rédei type $k$-blocking sets in $PG( n, q)$ is to construct a cone having as base a Rédei type $kprime$-blocking set in a subspace of $PG( n, q)$. But also other Rédei type $k$-blocking sets in $PG( n, q)$, which are not cones, exist. We give in this article a condition on the parameters of a Rédei type $k$-blocking set of $PG( n, q = p ^{ h }), p$ a prime power, which guarantees that the Rédei type $k$-blocking set is a cone. This condition is sharp. We also show that small Rédei type $k$-blocking sets are linear.
Keywords: rédei type $k$-blocking sets, directions of functions, linear point sets
@article{JAC_2001__14_3_a1,
     author = {Storme, L. and Sziklai, P.},
     title = {Linear point sets and {R\'edei} type $k$-blocking sets in $\mathrm{PG}(n,q)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {221--228},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_3_a1/}
}
TY  - JOUR
AU  - Storme, L.
AU  - Sziklai, P.
TI  - Linear point sets and Rédei type $k$-blocking sets in $\mathrm{PG}(n,q)$
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 221
EP  - 228
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_3_a1/
LA  - en
ID  - JAC_2001__14_3_a1
ER  - 
%0 Journal Article
%A Storme, L.
%A Sziklai, P.
%T Linear point sets and Rédei type $k$-blocking sets in $\mathrm{PG}(n,q)$
%J Journal of Algebraic Combinatorics
%D 2001
%P 221-228
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_3_a1/
%G en
%F JAC_2001__14_3_a1
Storme, L.; Sziklai, P. Linear point sets and Rédei type $k$-blocking sets in $\mathrm{PG}(n,q)$. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 3, pp. 221-228. http://geodesic.mathdoc.fr/item/JAC_2001__14_3_a1/