Unitals in finite Desarguesian planes
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 2, pp. 119-125.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that a suitable 2-dimensional linear system of Hermitian curves of $P$G$(2, q ^{2})$ defines a model for the Desarguesian plane $P$G$(2, q)$. Using this model we give the following group-theoretic characterization of the classical unitals. A unital in $P$G$(2, q ^{2})$ is classical if and only if it is fixed by a linear collineation group of order $6( q + 1) ^{2}$ that fixes no point or line in $P$G$(2, q ^{2})$.
Keywords: unitals, Hermitian curves, Desarguesian planes, unitary groups
@article{JAC_2001__14_2_a4,
     author = {Cossidente, A. and Ebert, G.L. and Korchm\'aros, G.},
     title = {Unitals in finite {Desarguesian} planes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a4/}
}
TY  - JOUR
AU  - Cossidente, A.
AU  - Ebert, G.L.
AU  - Korchmáros, G.
TI  - Unitals in finite Desarguesian planes
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 119
EP  - 125
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a4/
LA  - en
ID  - JAC_2001__14_2_a4
ER  - 
%0 Journal Article
%A Cossidente, A.
%A Ebert, G.L.
%A Korchmáros, G.
%T Unitals in finite Desarguesian planes
%J Journal of Algebraic Combinatorics
%D 2001
%P 119-125
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a4/
%G en
%F JAC_2001__14_2_a4
Cossidente, A.; Ebert, G.L.; Korchmáros, G. Unitals in finite Desarguesian planes. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 2, pp. 119-125. http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a4/