On the various realizations of the basic representation of $A_{n-1}^{(1)}$ and the combinatorics of partitions
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 2, pp. 133-144.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The infinite dimensional Lie algebra $scirc$l $_{n} = A _{ n-1} ^{(1)}$ can be realized in several ways as an algebra of differential operators. The aim of this note is to show that the intertwining operators between the realizations of $scirc$l $_{n}$ corresponding to all partitions of $n$ can be described very simply by using combinatorial constructions.
Keywords: Lie algebras, representation theory, combinatorics of partitions, symmetric functions
@article{JAC_2001__14_2_a2,
     author = {Leidwanger, S\'everine},
     title = {On the various realizations of the basic representation of $A_{n-1}^{(1)}$ and the combinatorics of partitions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {133--144},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a2/}
}
TY  - JOUR
AU  - Leidwanger, Séverine
TI  - On the various realizations of the basic representation of $A_{n-1}^{(1)}$ and the combinatorics of partitions
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 133
EP  - 144
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a2/
LA  - en
ID  - JAC_2001__14_2_a2
ER  - 
%0 Journal Article
%A Leidwanger, Séverine
%T On the various realizations of the basic representation of $A_{n-1}^{(1)}$ and the combinatorics of partitions
%J Journal of Algebraic Combinatorics
%D 2001
%P 133-144
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a2/
%G en
%F JAC_2001__14_2_a2
Leidwanger, Séverine. On the various realizations of the basic representation of $A_{n-1}^{(1)}$ and the combinatorics of partitions. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 2, pp. 133-144. http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a2/