The Kronecker product of Schur functions indexed by two-row shapes or hook shapes
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 2, pp. 153-173.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Kronecker product of two Schur functions $s \_$ mgr and s _ ngr, denoted by s _ mgr$ * s \_$ ngr, is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the partitions $mgr$ and $ngr$. The coefficient of $s \_$ lambda in this product is denoted by $gamma ^$ lambda_ mgrngr, and corresponds to the multiplicity of the irreducible character $chi ^$ lambda in $chi^{ $mgr$}chi ^$ ngr. We use Sergeev"s Formula for a Schur function of a difference of two alphabets and the comultiplication expansion for $s \_{ $lambda$}[ XY]$ to find closed formulas for the Kronecker coefficients $gamma ^$ lambda_ mgrngr when $lambda$ is an arbitrary shape and $mgr$ and $ngr$ are hook shapes or two-row shapes.
Keywords: Kronecker product internal product, sergeev"s formula
@article{JAC_2001__14_2_a0,
     author = {Rosas, Mercedes H.},
     title = {The {Kronecker} product of {Schur} functions indexed by two-row shapes or hook shapes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {153--173},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a0/}
}
TY  - JOUR
AU  - Rosas, Mercedes H.
TI  - The Kronecker product of Schur functions indexed by two-row shapes or hook shapes
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 153
EP  - 173
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a0/
LA  - en
ID  - JAC_2001__14_2_a0
ER  - 
%0 Journal Article
%A Rosas, Mercedes H.
%T The Kronecker product of Schur functions indexed by two-row shapes or hook shapes
%J Journal of Algebraic Combinatorics
%D 2001
%P 153-173
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a0/
%G en
%F JAC_2001__14_2_a0
Rosas, Mercedes H. The Kronecker product of Schur functions indexed by two-row shapes or hook shapes. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 2, pp. 153-173. http://geodesic.mathdoc.fr/item/JAC_2001__14_2_a0/