Graphs with least eigenvalue $-2$: The star complement technique
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a connected graph with least eigenvalue -2, of multiplicity $k$. A star complement for -2 in $G$ is an induced subgraph $H = G - X$ such that $| X| = k$ and -2 is not an eigenvalue of $H$. In the case that $G$ is a generalized line graph, a characterization of such subgraphs is used to decribe the eigenspace of -2. In some instances, $G$ itself can be characterized by a star complement. If $G$ is not a generalized line graph, $G$ is an $exceptional$ graph, and in this case it is shown how a star complement can be used to construct $G$ without recourse to root systems.
Keywords: graph, eigenvalue, eigenspace
@article{JAC_2001__14_1_a5,
     author = {Cvetkovi\'c, D. and Rowlinson, P. and Simi\'c, S.K.},
     title = {Graphs with least eigenvalue $-2$: {The} star complement technique},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a5/}
}
TY  - JOUR
AU  - Cvetković, D.
AU  - Rowlinson, P.
AU  - Simić, S.K.
TI  - Graphs with least eigenvalue $-2$: The star complement technique
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 5
EP  - 16
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a5/
LA  - en
ID  - JAC_2001__14_1_a5
ER  - 
%0 Journal Article
%A Cvetković, D.
%A Rowlinson, P.
%A Simić, S.K.
%T Graphs with least eigenvalue $-2$: The star complement technique
%J Journal of Algebraic Combinatorics
%D 2001
%P 5-16
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a5/
%G en
%F JAC_2001__14_1_a5
Cvetković, D.; Rowlinson, P.; Simić, S.K. Graphs with least eigenvalue $-2$: The star complement technique. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a5/