A conjecture concerning a limit of non-Cayley graphs
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Our aim in this note is to present a transitive graph that we conjecture is not quasi-isometric to any Cayley graph. No such graph is currently known. Our graph arises both as an abstract limit in a suitable space of graphs and in a concrete way as a subset of a product of trees.
Keywords: Cayley graph, transitive, quasi-isometry, infinite
@article{JAC_2001__14_1_a4,
     author = {Diestel, Reinhard and Leader, Imre},
     title = {A conjecture concerning a limit of {non-Cayley} graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a4/}
}
TY  - JOUR
AU  - Diestel, Reinhard
AU  - Leader, Imre
TI  - A conjecture concerning a limit of non-Cayley graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 17
EP  - 25
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a4/
LA  - en
ID  - JAC_2001__14_1_a4
ER  - 
%0 Journal Article
%A Diestel, Reinhard
%A Leader, Imre
%T A conjecture concerning a limit of non-Cayley graphs
%J Journal of Algebraic Combinatorics
%D 2001
%P 17-25
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a4/
%G en
%F JAC_2001__14_1_a4
Diestel, Reinhard; Leader, Imre. A conjecture concerning a limit of non-Cayley graphs. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a4/