Blocking sets and derivable partial spreads
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 49-56.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that a $GF( q)$-linear Rédei blocking set of size $q ^{t} + q ^{ t-1} + ;;; + q + 1$ of $P$G$(2, q ^{t})$ defines a derivable partial spread of $P$G($2 t - 1, q$). Using such a relationship, we are able to prove that there are at least two inequivalent Rédei minimal blocking sets of size $q ^{t} + q ^{ t-1} + ;;; + q + 1$ in $P$G$(2, q ^{t})$, if $tge$ 4.
Keywords: spread, translation plane, blocking set
@article{JAC_2001__14_1_a2,
     author = {Lunardon, G. and Polverino, O.},
     title = {Blocking sets and derivable partial spreads},
     journal = {Journal of Algebraic Combinatorics},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a2/}
}
TY  - JOUR
AU  - Lunardon, G.
AU  - Polverino, O.
TI  - Blocking sets and derivable partial spreads
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 49
EP  - 56
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a2/
LA  - en
ID  - JAC_2001__14_1_a2
ER  - 
%0 Journal Article
%A Lunardon, G.
%A Polverino, O.
%T Blocking sets and derivable partial spreads
%J Journal of Algebraic Combinatorics
%D 2001
%P 49-56
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a2/
%G en
%F JAC_2001__14_1_a2
Lunardon, G.; Polverino, O. Blocking sets and derivable partial spreads. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 49-56. http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a2/