Coverings of graphs and maps, orthogonality, and eigenvectors
Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 57-72.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Lifts of graph and map automorphisms can be described in terms of voltage assignments that are, in a sense, compatible with the automorphisms. We show that compatibility of ordinary voltage assignments in Abelian groups is related to orthogonality in certain $Z$ mathcalZ -modules. For cyclic groups, compatibility turns out to be equivalent with the existence of eigenvectors of certain matrices that are naturally associated with graph automorphisms. This allows for a great simplification in characterizing compatible voltage assignments and has applications in constructions of highly symmetric graphs and maps.
Keywords: graph, map, covering, voltage assignment, orthogonality, eigenvectors, automorphism
@article{JAC_2001__14_1_a1,
     author = {\v{S}ir\'a\v{n}, Jozef},
     title = {Coverings of graphs and maps, orthogonality, and eigenvectors},
     journal = {Journal of Algebraic Combinatorics},
     pages = {57--72},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a1/}
}
TY  - JOUR
AU  - Širáň, Jozef
TI  - Coverings of graphs and maps, orthogonality, and eigenvectors
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 57
EP  - 72
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a1/
LA  - en
ID  - JAC_2001__14_1_a1
ER  - 
%0 Journal Article
%A Širáň, Jozef
%T Coverings of graphs and maps, orthogonality, and eigenvectors
%J Journal of Algebraic Combinatorics
%D 2001
%P 57-72
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a1/
%G en
%F JAC_2001__14_1_a1
Širáň, Jozef. Coverings of graphs and maps, orthogonality, and eigenvectors. Journal of Algebraic Combinatorics, Tome 14 (2001) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/JAC_2001__14_1_a1/