A chromatic symmetric function in noncommuting variables
Journal of Algebraic Combinatorics, Tome 13 (2001) no. 3, pp. 227-255.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Stanley ( Advances in Math. 111, 1995, 166-194) associated with a graph $G$ a symmetric function $X _{G}$ which reduces to $G$'s chromatic polynomial $X _{ G} ( n )$ mathcalX_G $left( n right)$} under a certain specialization of variables. He then proved various theorems generalizing results about $X _ G ( n )$ {\mathcal{X}\_G $left( n \right)$ , as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, $X _{G}$ does not satisfy a Deletion-Contraction Law which makes it difficult to apply the useful technique of induction. We introduce a symmetric function $Y _{G}$ in noncommuting variables which does have such a law and specializes to $X _{G}$ when the variables are allowed to commute. This permits us to further generalize some of Stanley's theorems and prove them in a uniform and straightforward manner. Furthermore, we make some progress on the ( 3 + 1)-free Conjecture of Stanley and Stembridge ( J. Combin Theory $( A)$ J. 62, 1993, 261-279).
Keywords: chromatic polynomial, deletion-contraction, graph, symmetric function in noncommuting variables
@article{JAC_2001__13_3_a4,
     author = {Gebhard, David D. and Sagan, Bruce E.},
     title = {A chromatic symmetric function in noncommuting variables},
     journal = {Journal of Algebraic Combinatorics},
     pages = {227--255},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a4/}
}
TY  - JOUR
AU  - Gebhard, David D.
AU  - Sagan, Bruce E.
TI  - A chromatic symmetric function in noncommuting variables
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 227
EP  - 255
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a4/
LA  - en
ID  - JAC_2001__13_3_a4
ER  - 
%0 Journal Article
%A Gebhard, David D.
%A Sagan, Bruce E.
%T A chromatic symmetric function in noncommuting variables
%J Journal of Algebraic Combinatorics
%D 2001
%P 227-255
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a4/
%G en
%F JAC_2001__13_3_a4
Gebhard, David D.; Sagan, Bruce E. A chromatic symmetric function in noncommuting variables. Journal of Algebraic Combinatorics, Tome 13 (2001) no. 3, pp. 227-255. http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a4/