Orthogonal matroids
Journal of Algebraic Combinatorics, Tome 13 (2001) no. 3, pp. 295-315.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each pair (W, P) consisting of a finite irreducible Coxeter group $W$ and parabolic subgroup $P$ is associated a collection of objects called Coxeter matroids. The (ordinary) matroids are the special case where $W$ is the symmetric group (the $A _{n}$ case) and $P$ is a maximal parabolic subgroup.This generalization of matroid introduces interesting combinatorial structures corresponding to each of the finite Coxeter groups. Borovik, Gelfand and White began an investigation of the $B _{n}$ case, called symplectic matroids. This paper initiates the study of the $D _{n}$ case, called orthogonal matroids. The main result (Theorem 2) gives three characterizations of orthogonal matroid: algebraic, geometric, and combinatorial. This result relies on a combinatorial description of the Bruhat order on $D _{n}$ (Theorem 1). The representation of orthogonal matroids by way of totally isotropic subspaces of a classical orthogonal space (Theorem 5) justifies the terminology orthogonal matroid.
Keywords: orthogonal matroid, Coxeter matroid, Coxeter group, Bruhat order
@article{JAC_2001__13_3_a1,
     author = {Vince, Andrew and White, Neil},
     title = {Orthogonal matroids},
     journal = {Journal of Algebraic Combinatorics},
     pages = {295--315},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a1/}
}
TY  - JOUR
AU  - Vince, Andrew
AU  - White, Neil
TI  - Orthogonal matroids
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 295
EP  - 315
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a1/
LA  - en
ID  - JAC_2001__13_3_a1
ER  - 
%0 Journal Article
%A Vince, Andrew
%A White, Neil
%T Orthogonal matroids
%J Journal of Algebraic Combinatorics
%D 2001
%P 295-315
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a1/
%G en
%F JAC_2001__13_3_a1
Vince, Andrew; White, Neil. Orthogonal matroids. Journal of Algebraic Combinatorics, Tome 13 (2001) no. 3, pp. 295-315. http://geodesic.mathdoc.fr/item/JAC_2001__13_3_a1/