A statistic on involutions
Journal of Algebraic Combinatorics, Tome 13 (2001) no. 2, pp. 187-198.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define a statistic, called $weight$, on involutions and consider two applications in which this statistic arises. Let $I( n)$ denote the set of all involutions on [n](=${1,2,\dots , n}$) and let $F(2 n)$ denote the set of all fixed point free involutions on [$2 n$]. For an involution $( _{k} ^{n} ) q \left( {_{{k}}^{{n}} } \right)$q denote the $q$-binomial coefficient. There is a statistic wt on $I( n)$ such that the following results are true. (i) We have the expansion
Keywords: permutation statistics, $q$-binomial coefficient, Bruhat order, involutions, fixed point free involutions
@article{JAC_2001__13_2_a2,
     author = {Deodhar, Rajendra S. and Srinivasan, Murali K.},
     title = {A statistic on involutions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {187--198},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__13_2_a2/}
}
TY  - JOUR
AU  - Deodhar, Rajendra S.
AU  - Srinivasan, Murali K.
TI  - A statistic on involutions
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 187
EP  - 198
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__13_2_a2/
LA  - en
ID  - JAC_2001__13_2_a2
ER  - 
%0 Journal Article
%A Deodhar, Rajendra S.
%A Srinivasan, Murali K.
%T A statistic on involutions
%J Journal of Algebraic Combinatorics
%D 2001
%P 187-198
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__13_2_a2/
%G en
%F JAC_2001__13_2_a2
Deodhar, Rajendra S.; Srinivasan, Murali K. A statistic on involutions. Journal of Algebraic Combinatorics, Tome 13 (2001) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/JAC_2001__13_2_a2/