On the generation of some embeddable GF(2) geometries
Journal of Algebraic Combinatorics, Tome 13 (2001) no. 1, pp. 15-28.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The generating rank is determined for several $GF(2)$-embeddable geometries and it is demonstrated that their generating and embedding ranks are equal. Specifically, we prove that each of the two generalized hexagons of order (2, 2) has generating rank 14, that the central involution geometry of the Hall-Janko sporadic group has generating rank 28, and that the dual polar space $DU(6,2)$ has generating rank 22. We also include a survey of all instances in which either the generating or embedding rank of an embeddable $GF(2)$ geometry is known.
Keywords: point-line geometry, embeddable geometry, embedding rank, generating rank
@article{JAC_2001__13_1_a5,
     author = {Cooperstein, B.N.},
     title = {On the generation of some embeddable {GF(2)} geometries},
     journal = {Journal of Algebraic Combinatorics},
     pages = {15--28},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a5/}
}
TY  - JOUR
AU  - Cooperstein, B.N.
TI  - On the generation of some embeddable GF(2) geometries
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 15
EP  - 28
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a5/
LA  - en
ID  - JAC_2001__13_1_a5
ER  - 
%0 Journal Article
%A Cooperstein, B.N.
%T On the generation of some embeddable GF(2) geometries
%J Journal of Algebraic Combinatorics
%D 2001
%P 15-28
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a5/
%G en
%F JAC_2001__13_1_a5
Cooperstein, B.N. On the generation of some embeddable GF(2) geometries. Journal of Algebraic Combinatorics, Tome 13 (2001) no. 1, pp. 15-28. http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a5/