Quotients of Poincaré polynomials evaluated at $-1$
Journal of Algebraic Combinatorics, Tome 13 (2001) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a finite reflection group $W$ and parabolic subgroup $W _{J}$, we establish that the quotient of Poincaré polynomials $\frac{W(t)}{W_J(t)}$, when evaluated at $t=-1$, counts the number of cosets of $W _{J}$ in $W$ fixed by the longest element. Our case-by-case proof relies on the work of Stembridge (Stembridge, Duke Mathematical Journal, 73 (1994), 469-490) regarding minuscule representations and on the calculations of $\frac $W( - 1 ) $W _{ J}$ ( - 1 ) fracW$left( - 1 right)${{W\_J $left( { - 1} \right)}}}$ of Tan (Tan, Communications in Algebra, 22 (1994), 1049-1061).
Keywords: reflection groups, Poincaré polynomials, longest element, minuscule representations
@article{JAC_2001__13_1_a4,
     author = {Eng, Oliver D.},
     title = {Quotients of {Poincar\'e} polynomials evaluated at $-1$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a4/}
}
TY  - JOUR
AU  - Eng, Oliver D.
TI  - Quotients of Poincaré polynomials evaluated at $-1$
JO  - Journal of Algebraic Combinatorics
PY  - 2001
SP  - 29
EP  - 40
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a4/
LA  - en
ID  - JAC_2001__13_1_a4
ER  - 
%0 Journal Article
%A Eng, Oliver D.
%T Quotients of Poincaré polynomials evaluated at $-1$
%J Journal of Algebraic Combinatorics
%D 2001
%P 29-40
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a4/
%G en
%F JAC_2001__13_1_a4
Eng, Oliver D. Quotients of Poincaré polynomials evaluated at $-1$. Journal of Algebraic Combinatorics, Tome 13 (2001) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/JAC_2001__13_1_a4/