Isodual codes over $\bbfZ_{2k}$ and isodual lattices
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 3, pp. 223-240.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A code is called isodual if it is equivalent to its dual code, and a lattice is called isodual if it is isometric to its dual lattice. In this note, we investigate isodual codes over $Zopf_{2 k }$. These codes give rise to isodual lattices; in particular, we construct a 22-dimensional isodual lattice with minimum norm 3 and kissing number 2464.
Classification : designs, In, this, section,, we, classify, the, double, circulant, codes, of, length, 22, over, Z4, with, minimum, Euclidean, weight, 12
Keywords: isodual lattices, isodual codes over $Zopf_{ k }$ and double circulant codes
@article{JAC_2000__12_3_a4,
     author = {Bachoc, Christine and Gulliver, T.Aaron and Harada, Masaaki},
     title = {Isodual codes over $\bbfZ_{2k}$ and isodual lattices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {223--240},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a4/}
}
TY  - JOUR
AU  - Bachoc, Christine
AU  - Gulliver, T.Aaron
AU  - Harada, Masaaki
TI  - Isodual codes over $\bbfZ_{2k}$ and isodual lattices
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 223
EP  - 240
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a4/
LA  - en
ID  - JAC_2000__12_3_a4
ER  - 
%0 Journal Article
%A Bachoc, Christine
%A Gulliver, T.Aaron
%A Harada, Masaaki
%T Isodual codes over $\bbfZ_{2k}$ and isodual lattices
%J Journal of Algebraic Combinatorics
%D 2000
%P 223-240
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a4/
%G en
%F JAC_2000__12_3_a4
Bachoc, Christine; Gulliver, T.Aaron; Harada, Masaaki. Isodual codes over $\bbfZ_{2k}$ and isodual lattices. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 3, pp. 223-240. http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a4/