Zassenhaus Lie idempotents, $q$-bracketing and a new exponential/logarithm correspondence
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 3, pp. 251-277.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce a new $q$-exponential/logarithm correspondance that allows us to solve a conjecture relating Zassenhauss Lie idempotents with other Lie idempotents related to the $q$-bracketing operator.
Keywords: fer-zassenhauss formula, Lie idempotents, noncommutative symmetric functions, logarithm, exponential
@article{JAC_2000__12_3_a2,
     author = {Duchamp, G. and Krob, D. and Vassilieva, E.A.},
     title = {Zassenhaus {Lie} idempotents, $q$-bracketing and a new exponential/logarithm correspondence},
     journal = {Journal of Algebraic Combinatorics},
     pages = {251--277},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a2/}
}
TY  - JOUR
AU  - Duchamp, G.
AU  - Krob, D.
AU  - Vassilieva, E.A.
TI  - Zassenhaus Lie idempotents, $q$-bracketing and a new exponential/logarithm correspondence
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 251
EP  - 277
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a2/
LA  - en
ID  - JAC_2000__12_3_a2
ER  - 
%0 Journal Article
%A Duchamp, G.
%A Krob, D.
%A Vassilieva, E.A.
%T Zassenhaus Lie idempotents, $q$-bracketing and a new exponential/logarithm correspondence
%J Journal of Algebraic Combinatorics
%D 2000
%P 251-277
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a2/
%G en
%F JAC_2000__12_3_a2
Duchamp, G.; Krob, D.; Vassilieva, E.A. Zassenhaus Lie idempotents, $q$-bracketing and a new exponential/logarithm correspondence. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 3, pp. 251-277. http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a2/