Iterated homology of simplical complexes
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 3, pp. 279-294.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We develop an iterated homology theory for simplicial complexes. Thistheory is a variation on one due to Kalai. For $Delta$ a simplicial complex of dimension $d - 1$, and each $r = 0, \dots , d$, we define rth iterated homology groups of $Delta$. When $r = 0$, this corresponds to ordinary homology. If $Delta$ is a cone over $Deltaprime$, then when $r = 1$, we get the homology of $Deltaprime$. If a simplicial complex is (nonpure) shellable, then its iterated Betti numbers give the restriction numbers, $h _{ k,j }$, of the shelling. Iterated Betti numbers are preserved by algebraic shifting, and may be interpreted combinatorially in terms of the algebraically shifted complex in several ways. In addition, the depth of a simplicial complex can be characterized in terms of its iterated Betti numbers.
Keywords: shellability, algebraic shifting, depth, Betti numbers, simplicial complex
@article{JAC_2000__12_3_a1,
     author = {Duval, Art M. and Rose, Lauren L.},
     title = {Iterated homology of simplical complexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {279--294},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a1/}
}
TY  - JOUR
AU  - Duval, Art M.
AU  - Rose, Lauren L.
TI  - Iterated homology of simplical complexes
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 279
EP  - 294
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a1/
LA  - en
ID  - JAC_2000__12_3_a1
ER  - 
%0 Journal Article
%A Duval, Art M.
%A Rose, Lauren L.
%T Iterated homology of simplical complexes
%J Journal of Algebraic Combinatorics
%D 2000
%P 279-294
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a1/
%G en
%F JAC_2000__12_3_a1
Duval, Art M.; Rose, Lauren L. Iterated homology of simplical complexes. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 3, pp. 279-294. http://geodesic.mathdoc.fr/item/JAC_2000__12_3_a1/