Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order $(s,s^3)$
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 107-113.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: From an elementary observation, we derive some upper bounds for the number of mutually opposite points in the classical generalized polygons having 3 points on each line. In particular, it follows that the Ree-Tits generalized octagon $O(2)$ of order (2, 4) has no ovoids. Also, we deduce from another observation a similar upper bound in any generalized hexagon of order $( s, s ^{3})$.
Keywords: generalized polygon, generalized hexagon, ovoid, partial ovoid, projective embedding
@article{JAC_2000__12_2_a6,
     author = {Coolsaet, Kris and Van Maldeghem, Hendrik},
     title = {Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order $(s,s^3)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {107--113},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a6/}
}
TY  - JOUR
AU  - Coolsaet, Kris
AU  - Van Maldeghem, Hendrik
TI  - Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order $(s,s^3)$
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 107
EP  - 113
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a6/
LA  - en
ID  - JAC_2000__12_2_a6
ER  - 
%0 Journal Article
%A Coolsaet, Kris
%A Van Maldeghem, Hendrik
%T Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order $(s,s^3)$
%J Journal of Algebraic Combinatorics
%D 2000
%P 107-113
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a6/
%G en
%F JAC_2000__12_2_a6
Coolsaet, Kris; Van Maldeghem, Hendrik. Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order $(s,s^3)$. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 107-113. http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a6/