Spectral characterizations of the Lovász number and the Delsarte number of a graph
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 131-143.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper gives spectral characterizations of two closely related graph functions: the Lovász number $thetav$ and a generalization $thetav ^{1}$ of Delsarte's linear programming bound. There are many known characterizations of the Lovász number $thetav$, and each one corresponds to a similar characterization of $thetav ^{1}$ obtained by extremizing over a larger or smaller class of objects. The spectral characterizations of $thetav$ and $thetav ^{1}$ given here involve the largest eigenvalue of a type of weighted Laplacian that Fan Chung introduced.
Keywords: graph Laplacian, delsarte linear programming bound, lovász number
@article{JAC_2000__12_2_a3,
     author = {Galtman, A.},
     title = {Spectral characterizations of the {Lov\'asz} number and the {Delsarte} number of a graph},
     journal = {Journal of Algebraic Combinatorics},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a3/}
}
TY  - JOUR
AU  - Galtman, A.
TI  - Spectral characterizations of the Lovász number and the Delsarte number of a graph
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 131
EP  - 143
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a3/
LA  - en
ID  - JAC_2000__12_2_a3
ER  - 
%0 Journal Article
%A Galtman, A.
%T Spectral characterizations of the Lovász number and the Delsarte number of a graph
%J Journal of Algebraic Combinatorics
%D 2000
%P 131-143
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a3/
%G en
%F JAC_2000__12_2_a3
Galtman, A. Spectral characterizations of the Lovász number and the Delsarte number of a graph. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a3/