Cyclic characters of symmetric groups
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 155-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider characters of finite symmetric groups induced from linear characters of cyclic subgroups. A new approach to Stembridge's result on their decomposition into irreducible components is presented. In the special case of a subgroup generated by a cycle of longest possible length, this amounts to a short proof of the Kra $sacute$kiewicz-Weyman theorem.
Keywords: symmetric group, Young tableau, multi major index, induced character, Lie idempotent
@article{JAC_2000__12_2_a1,
     author = {J\"ollenbeck, Armin and Schocker, Manfred},
     title = {Cyclic characters of symmetric groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a1/}
}
TY  - JOUR
AU  - Jöllenbeck, Armin
AU  - Schocker, Manfred
TI  - Cyclic characters of symmetric groups
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 155
EP  - 161
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a1/
LA  - en
ID  - JAC_2000__12_2_a1
ER  - 
%0 Journal Article
%A Jöllenbeck, Armin
%A Schocker, Manfred
%T Cyclic characters of symmetric groups
%J Journal of Algebraic Combinatorics
%D 2000
%P 155-161
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a1/
%G en
%F JAC_2000__12_2_a1
Jöllenbeck, Armin; Schocker, Manfred. Cyclic characters of symmetric groups. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a1/