Tight distance-regular graphs
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 163-197.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a distance-regular graph ( q $_{1} + \frac k a _{1} + 1$ )( q $_{ d} + \frac k a _{1} + 1 ) \geqslant - \frac ka _{1} b _{1} ( a _{1} + 1) ^{2} . \left( {\theta _1 + \frac{k}{{a_1 + 1}}} \right)\left( {\theta _d + \frac{k}{{a_1 + 1}}} \right) \geqslant $- fracka_1 b_1 (a_1 + 1)^2 . We say $Gamma$ is $tight$ whenever $Gamma$ is not bipartite, and equality holds above. We characterize the tight property in a number of ways. For example, we show $Gamma$ is tight if and only if the intersection numbers are given by certain rational expressions involving $d$ independent parameters. We show $Gamma$ is tight if and only if $a_{1} ne$ 0, $a _{d} = 0$, and $Gamma$ is 1-homogeneous in the sense of Nomura. We show $Gamma$ is tight if and only if each local graph is connected strongly-regular, with nontrivial eigenvalues -$1 - b _{1}$(1 + $theta _{1}) ^{-1}$ and -$1 - b _{1}$(1 + $theta_{ d }) ^{-1}$. Three infinite families and nine sporadic examples of tight distance-regular graphs are given.
Keywords: distance-regular graph, equality, tight graph, homogeneous, locally strongly-regular parameterization
@article{JAC_2000__12_2_a0,
     author = {Juri\v{s}i\'c, Aleksandar and Koolen, Jack and Terwilliger, Paul},
     title = {Tight distance-regular graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {163--197},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a0/}
}
TY  - JOUR
AU  - Jurišić, Aleksandar
AU  - Koolen, Jack
AU  - Terwilliger, Paul
TI  - Tight distance-regular graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 163
EP  - 197
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a0/
LA  - en
ID  - JAC_2000__12_2_a0
ER  - 
%0 Journal Article
%A Jurišić, Aleksandar
%A Koolen, Jack
%A Terwilliger, Paul
%T Tight distance-regular graphs
%J Journal of Algebraic Combinatorics
%D 2000
%P 163-197
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a0/
%G en
%F JAC_2000__12_2_a0
Jurišić, Aleksandar; Koolen, Jack; Terwilliger, Paul. Tight distance-regular graphs. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 2, pp. 163-197. http://geodesic.mathdoc.fr/item/JAC_2000__12_2_a0/