Noncommutative enumeration in graded posets
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 7-24.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define a noncommutative algebra of flag-enumeration functionals on graded posets and show it to be isomorphic to the free associative algebra on countably many generators. Restricted to Eulerian posets, this ring has a particularly appealing presentation with kernel generated by Euler relations. A consequence is that even on Eulerian posets, the algebra is free, with generators corresponding to odd jumps in flags. In this context, the coefficients of the cd-index provide a graded basis.
Keywords: graded poset, Eulerian poset, flag $f$-vector, flag $h$-vector, odd jumps, cd-index, coalgebra, Fibonacci
@article{JAC_2000__12_1_a6,
     author = {Billera, Louis J. and Liu, Niandong},
     title = {Noncommutative enumeration in graded posets},
     journal = {Journal of Algebraic Combinatorics},
     pages = {7--24},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a6/}
}
TY  - JOUR
AU  - Billera, Louis J.
AU  - Liu, Niandong
TI  - Noncommutative enumeration in graded posets
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 7
EP  - 24
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a6/
LA  - en
ID  - JAC_2000__12_1_a6
ER  - 
%0 Journal Article
%A Billera, Louis J.
%A Liu, Niandong
%T Noncommutative enumeration in graded posets
%J Journal of Algebraic Combinatorics
%D 2000
%P 7-24
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a6/
%G en
%F JAC_2000__12_1_a6
Billera, Louis J.; Liu, Niandong. Noncommutative enumeration in graded posets. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 7-24. http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a6/