Distance-regular graphs related to the quantum enveloping algebra of $sl(2)$
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 25-36.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate a connection between distance-regular graphs and $U _{q}( sl(2))$, the quantum universal enveloping algebra of the Lie algebra $sl(2)$. Let $T = T( x)$ mathcalT = mathcalT$(x) ( x)$ denote the Terwilliger algebra of $T$ mathcalT is generated by certain matrices satisfying the defining relations of $U _{q}( sl(2))$ if and only if $Gamma$ is bipartite and 2-homogeneous.
Keywords: distance-regular graph, Terwilliger algebra, quantum group
@article{JAC_2000__12_1_a5,
     author = {Curtin, Brian and Nomura, Kazumasa},
     title = {Distance-regular graphs related to the quantum enveloping algebra of $sl(2)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a5/}
}
TY  - JOUR
AU  - Curtin, Brian
AU  - Nomura, Kazumasa
TI  - Distance-regular graphs related to the quantum enveloping algebra of $sl(2)$
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 25
EP  - 36
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a5/
LA  - en
ID  - JAC_2000__12_1_a5
ER  - 
%0 Journal Article
%A Curtin, Brian
%A Nomura, Kazumasa
%T Distance-regular graphs related to the quantum enveloping algebra of $sl(2)$
%J Journal of Algebraic Combinatorics
%D 2000
%P 25-36
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a5/
%G en
%F JAC_2000__12_1_a5
Curtin, Brian; Nomura, Kazumasa. Distance-regular graphs related to the quantum enveloping algebra of $sl(2)$. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 25-36. http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a5/