General form of non-symmetric spin models
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A spin model (for link invariants) is a square matrix $W$ with non-zero complex entries which satisfies certain axioms. Recently (Jaeger and Nomura, J. Alg. Combin. 10 (1999), 241-278) it was shown that $^{t} WW ^{-1}$ is a permutation matrix (the order of this permutation matrix is called the $ldquo$index $rdquo$ of $W$), and a general form was given for spin models of index 2. In the present paper, we generalize this general form to an arbitrary index $m$. In particular, we give a simple form of $W$ when $m$ is a prime number.
Keywords: spin model, association scheme, Bose-mesner algebra
@article{JAC_2000__12_1_a3,
     author = {Ikuta, Takuya and Nomura, Kazumasa},
     title = {General form of non-symmetric spin models},
     journal = {Journal of Algebraic Combinatorics},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a3/}
}
TY  - JOUR
AU  - Ikuta, Takuya
AU  - Nomura, Kazumasa
TI  - General form of non-symmetric spin models
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 59
EP  - 72
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a3/
LA  - en
ID  - JAC_2000__12_1_a3
ER  - 
%0 Journal Article
%A Ikuta, Takuya
%A Nomura, Kazumasa
%T General form of non-symmetric spin models
%J Journal of Algebraic Combinatorics
%D 2000
%P 59-72
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a3/
%G en
%F JAC_2000__12_1_a3
Ikuta, Takuya; Nomura, Kazumasa. General form of non-symmetric spin models. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a3/