The structure of automorphism groups of Cayley graphs and maps.
Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 73-84.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The automorphism groups $Aut( C( G, X))$ and $Aut( CM( G, X, p))$ of a Cayley graph $C( G, X)$ and a Cayley map $CM( G, X, p)$ both contain an isomorphic copy of the underlying group $G$ acting via left translations. In our paper, we show that both automorphism groups are rotary extensions of the group $G$ by the stabilizer subgroup of the vertex $1 _{ G }$. We use this description to derive necessary and sufficient conditions to be satisfied by a finite group in order to be the (full) automorphism group of a Cayley graph or map and classify all the finite groups that can be represented as the (full) automorphism group of some Cayley graph or map.
Keywords: Cayley graph, Cayley map, automorphism group
@article{JAC_2000__12_1_a2,
     author = {Jajcay, Robert},
     title = {The structure of automorphism groups of {Cayley} graphs and maps.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a2/}
}
TY  - JOUR
AU  - Jajcay, Robert
TI  - The structure of automorphism groups of Cayley graphs and maps.
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 73
EP  - 84
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a2/
LA  - en
ID  - JAC_2000__12_1_a2
ER  - 
%0 Journal Article
%A Jajcay, Robert
%T The structure of automorphism groups of Cayley graphs and maps.
%J Journal of Algebraic Combinatorics
%D 2000
%P 73-84
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a2/
%G en
%F JAC_2000__12_1_a2
Jajcay, Robert. The structure of automorphism groups of Cayley graphs and maps.. Journal of Algebraic Combinatorics, Tome 12 (2000) no. 1, pp. 73-84. http://geodesic.mathdoc.fr/item/JAC_2000__12_1_a2/