Roots of independence polynomials of well covered graphs
Journal of Algebraic Combinatorics, Tome 11 (2000) no. 3, pp. 197-210.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let G be a well covered graph, that is, all maximal independent sets of G have the same cardinality, and let i $_{k}$ denote the number of independent sets of cardinality k in G. We investigate the roots of the independence polynomial $i(G, x) = sum$ i $_{k}$x $^{k}$. In particular, we show that if G is a well covered graph with independence number $beta$, then all the roots of $i(G, x)$ lie in in the disk |z| $lebeta$ (this is far from true if the condition of being well covered is omitted). Moreover, there is a family of well covered graphs (for each $beta$) for which the independence polynomials have a root arbitrarily close to - $beta$.
Keywords: graph, independence, polynomial, root, well covered
@article{JAC_2000__11_3_a4,
     author = {Brown, J.I. and Dilcher, K. and Nowakowski, R.J.},
     title = {Roots of independence polynomials of well covered graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {197--210},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__11_3_a4/}
}
TY  - JOUR
AU  - Brown, J.I.
AU  - Dilcher, K.
AU  - Nowakowski, R.J.
TI  - Roots of independence polynomials of well covered graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 197
EP  - 210
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__11_3_a4/
LA  - en
ID  - JAC_2000__11_3_a4
ER  - 
%0 Journal Article
%A Brown, J.I.
%A Dilcher, K.
%A Nowakowski, R.J.
%T Roots of independence polynomials of well covered graphs
%J Journal of Algebraic Combinatorics
%D 2000
%P 197-210
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__11_3_a4/
%G en
%F JAC_2000__11_3_a4
Brown, J.I.; Dilcher, K.; Nowakowski, R.J. Roots of independence polynomials of well covered graphs. Journal of Algebraic Combinatorics, Tome 11 (2000) no. 3, pp. 197-210. http://geodesic.mathdoc.fr/item/JAC_2000__11_3_a4/