The greedy algorithm and Coxeter matroids
Journal of Algebraic Combinatorics, Tome 11 (2000) no. 2, pp. 155-178.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each pair (W, P) consisting of a finite irreducible Coxeter group W and parabolic subgroup P is associated a collection of objects called Coxeter matroids. The (ordinary) matroids are a special case, the case W = A (isomorphic to the symmetric group Sym $_{_n+1}$) and P a maximal parabolic subgroup. The main result of this paper is that for Coxeter matroids, just as for ordinary matroids, the greedy algorithm provides a solution to a naturally associated combinatorial optimization problem. Indeed, in many important cases, Coxeter matroids are characterized by this property. This result generalizes the classical Rado-Edmonds and Gale theorems. A corollary of our theorem is that, for Coxeter matroids L, the greedy algorithm solves the L-assignment problem. Let W be a finite group acting as linear transformations on a Euclidean space $\mathbb E$ mathbbE , and let $f _{ x, h} ( w)$ = á $w$ x, h ñ $for$ x, h Ĩ $\mathbb E, w$ Ĩ $W$. f_$\xi ,\eta $ (w) = left$\langle $w$\xi ,\eta $ right$\rangle $text for $\xi , \eta \in $mathbbE,w $\in W$. The L-assignment problem is to minimize the function $f _{ x, h}$ f_$\xi ,\eta $ on a given subset L Í $\subseteq W$.
Keywords: greedy algorithm, Coxeter group, matroid, Bruhat order
@article{JAC_2000__11_2_a0,
     author = {Vince, A.},
     title = {The greedy algorithm and {Coxeter} matroids},
     journal = {Journal of Algebraic Combinatorics},
     pages = {155--178},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__11_2_a0/}
}
TY  - JOUR
AU  - Vince, A.
TI  - The greedy algorithm and Coxeter matroids
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 155
EP  - 178
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__11_2_a0/
LA  - en
ID  - JAC_2000__11_2_a0
ER  - 
%0 Journal Article
%A Vince, A.
%T The greedy algorithm and Coxeter matroids
%J Journal of Algebraic Combinatorics
%D 2000
%P 155-178
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__11_2_a0/
%G en
%F JAC_2000__11_2_a0
Vince, A. The greedy algorithm and Coxeter matroids. Journal of Algebraic Combinatorics, Tome 11 (2000) no. 2, pp. 155-178. http://geodesic.mathdoc.fr/item/JAC_2000__11_2_a0/