Quasi-shuffle products
Journal of Algebraic Combinatorics, Tome 11 (2000) no. 1, pp. 49-68.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a locally finite graded set A and a commutative, associative operation on A that adds degrees, we construct a commutative multiplication * on the set of noncommutative polynomials in A which we call a quasi-shuffle product; it can be viewed as a generalization of the shuffle product III. We extend this commutative algebra structure to a Hopf algebra (U, *, $Delta$); in the case where A is the set of positive integers and the operation on A is addition, this gives the Hopf algebra of quasi-symmetric functions. If rational coefficients are allowed, the quasi-shuffle product is in fact no more general than the shuffle product; we give an isomorphism exp of the shuffle Hopf algebra (U, III, $Delta$) onto (U, *, $Delta$) the set L of Lyndon words on A and their images $exp(w)mid$ w $isin$ L freely generate the algebra (U, *). We also consider the graded dual of (U, *, $Delta$). We define a $deformation * _{q}$ of * that coincides with * when q = 1 and is isomorphic to the concatenation product when q is not a root of unity. Finally, we discuss various examples, particularly the algebra of quasi-symmetric functions (dual to the noncommutative symmetric functions) and the algebra of Euler sums.
Classification : Primary, 16W30,, 16W50,, 16S80;, Secondary, 05E05
Keywords: Hopf algebra, shuffle algebra, quasi-symmetric function, noncommutative symmetric function, quantum shuffle product
@article{JAC_2000__11_1_a2,
     author = {Hoffman, Michael E.},
     title = {Quasi-shuffle products},
     journal = {Journal of Algebraic Combinatorics},
     pages = {49--68},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a2/}
}
TY  - JOUR
AU  - Hoffman, Michael E.
TI  - Quasi-shuffle products
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 49
EP  - 68
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a2/
LA  - en
ID  - JAC_2000__11_1_a2
ER  - 
%0 Journal Article
%A Hoffman, Michael E.
%T Quasi-shuffle products
%J Journal of Algebraic Combinatorics
%D 2000
%P 49-68
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a2/
%G en
%F JAC_2000__11_1_a2
Hoffman, Michael E. Quasi-shuffle products. Journal of Algebraic Combinatorics, Tome 11 (2000) no. 1, pp. 49-68. http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a2/