Plane partitions and characters of the symmetric group
Journal of Algebraic Combinatorics, Tome 11 (2000) no. 1, pp. 79-88.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we show that the existence of plane partitions, which are minimal in a sense to be defined, yields minimal irreducible summands in the Kronecker product $chi^{ $lambda$}otimeschi ^$ mgr of two irreducible characters of the symmetric group $S(n)$. The minimality of the summands refers to the dominance order of partitions of n. The multiplicity of a minimal summand $chi ^$ ngr equals the number of pairs of Littlewood-Richardson multitableaux of shape ( $lambda, mgr$), conjugate content and type $ngr$. We also give lower and upper bounds for these numbers.
Keywords: Kronecker product, character of symmetric group, dominance order of partition, tableau
@article{JAC_2000__11_1_a0,
     author = {Vallejo, Ernesto},
     title = {Plane partitions and characters of the symmetric group},
     journal = {Journal of Algebraic Combinatorics},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a0/}
}
TY  - JOUR
AU  - Vallejo, Ernesto
TI  - Plane partitions and characters of the symmetric group
JO  - Journal of Algebraic Combinatorics
PY  - 2000
SP  - 79
EP  - 88
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a0/
LA  - en
ID  - JAC_2000__11_1_a0
ER  - 
%0 Journal Article
%A Vallejo, Ernesto
%T Plane partitions and characters of the symmetric group
%J Journal of Algebraic Combinatorics
%D 2000
%P 79-88
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a0/
%G en
%F JAC_2000__11_1_a0
Vallejo, Ernesto. Plane partitions and characters of the symmetric group. Journal of Algebraic Combinatorics, Tome 11 (2000) no. 1, pp. 79-88. http://geodesic.mathdoc.fr/item/JAC_2000__11_1_a0/