Homotopy of non-modular partitions and the Whitehouse module
Journal of Algebraic Combinatorics, Tome 9 (1999) no. 3, pp. 251-269.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present a class of subposets of the partition lattice $( n - 1)!\frac n - k k$ (n - 1)!fracn - kk . The posets $Q _{ n } ^{ k }$ are neither shellable nor Cohen-Macaulay. We show that the $S _{ n }$-module structure of the homology generalises the Whitehouse module in a simple way.
Keywords: poset, homology, homotopy, set partition, group representation
@article{JAC_1999__9_3_a3,
     author = {Sundaram, Sheila},
     title = {Homotopy of non-modular partitions and the {Whitehouse} module},
     journal = {Journal of Algebraic Combinatorics},
     pages = {251--269},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__9_3_a3/}
}
TY  - JOUR
AU  - Sundaram, Sheila
TI  - Homotopy of non-modular partitions and the Whitehouse module
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 251
EP  - 269
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__9_3_a3/
LA  - en
ID  - JAC_1999__9_3_a3
ER  - 
%0 Journal Article
%A Sundaram, Sheila
%T Homotopy of non-modular partitions and the Whitehouse module
%J Journal of Algebraic Combinatorics
%D 1999
%P 251-269
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__9_3_a3/
%G en
%F JAC_1999__9_3_a3
Sundaram, Sheila. Homotopy of non-modular partitions and the Whitehouse module. Journal of Algebraic Combinatorics, Tome 9 (1999) no. 3, pp. 251-269. http://geodesic.mathdoc.fr/item/JAC_1999__9_3_a3/