The median stabilization degree of a median algebra
Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 115-127.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The median stabilization degree (msd, for short) of a median algebra measures the largest possible number of steps needed to generate a subalgebra with an arbitrary set of generators. We determine the value of msd of a graphic n-cube Qn and we derive an estimation of msd for the natural median operator of Rn which is sharp up to one or two units. Interestingly, msd of Qn and of Rn grows like log1.5n. Finally, we characterize median algebras and median graphs of msd $le$ 1 in terms of forbidden subspaces.
Keywords: convex structure, graphic cube, median algebra, median stabilization degree, superextension
@article{JAC_1999__9_2_a6,
     author = {Bandelt, H.-J. and van de Vel, M.},
     title = {The median stabilization degree of a median algebra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {115--127},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a6/}
}
TY  - JOUR
AU  - Bandelt, H.-J.
AU  - van de Vel, M.
TI  - The median stabilization degree of a median algebra
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 115
EP  - 127
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a6/
LA  - en
ID  - JAC_1999__9_2_a6
ER  - 
%0 Journal Article
%A Bandelt, H.-J.
%A van de Vel, M.
%T The median stabilization degree of a median algebra
%J Journal of Algebraic Combinatorics
%D 1999
%P 115-127
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a6/
%G en
%F JAC_1999__9_2_a6
Bandelt, H.-J.; van de Vel, M. The median stabilization degree of a median algebra. Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 115-127. http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a6/