Biprimitive graphs of smallest order
Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 151-156.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A regular and edge-transitive graph which is not vertex-transitive is said to be semisymmetric. Every semisymmetric graph is necessarily bipartite, with the two parts having equal size and the automorphism group acting transitively on each of these parts. A semisymmetric graph is called biprimitive if its automorphism group acts primitively on each part. In this paper biprimitive graphs of smallest order are determined.
Classification : !!par!!In, 1995,, the, first, author, constructed, an, infinite, family, of, biprimitive, graphs, by, giving,, for, *, The, work, was, done, during, author's, postdoctorship, at, IMFM,, University, of, Ljubljana, and, was, supported, by, the, Slovenian, Ministry, of, Science, and, Technology,, project, no
Keywords: primitive group, semisymmetric graph, biprimitive graph
@article{JAC_1999__9_2_a3,
     author = {Du, Shao-Fei and Maru\v{s}i\v{c}, Dragan},
     title = {Biprimitive graphs of smallest order},
     journal = {Journal of Algebraic Combinatorics},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a3/}
}
TY  - JOUR
AU  - Du, Shao-Fei
AU  - Marušič, Dragan
TI  - Biprimitive graphs of smallest order
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 151
EP  - 156
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a3/
LA  - en
ID  - JAC_1999__9_2_a3
ER  - 
%0 Journal Article
%A Du, Shao-Fei
%A Marušič, Dragan
%T Biprimitive graphs of smallest order
%J Journal of Algebraic Combinatorics
%D 1999
%P 151-156
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a3/
%G en
%F JAC_1999__9_2_a3
Du, Shao-Fei; Marušič, Dragan. Biprimitive graphs of smallest order. Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 151-156. http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a3/