Counting unbranched subgraphs
Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 157-160.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given an arbitrary finite graph, the polynomial $Q( z) = S F$ Ĩ $U ^{ _{ ^{ Z $^ cardF $ Q(z) = \Sigma F \in $U^_^Z^cardF associates a weight zcardF to each unbranched subgraph F of length cardF. We show that all the zeros of Q have negative real part.
Keywords: counting polynomial, graph, unbranched subgraph
@article{JAC_1999__9_2_a2,
     author = {Ruelle, David},
     title = {Counting unbranched subgraphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {157--160},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a2/}
}
TY  - JOUR
AU  - Ruelle, David
TI  - Counting unbranched subgraphs
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 157
EP  - 160
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a2/
LA  - en
ID  - JAC_1999__9_2_a2
ER  - 
%0 Journal Article
%A Ruelle, David
%T Counting unbranched subgraphs
%J Journal of Algebraic Combinatorics
%D 1999
%P 157-160
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a2/
%G en
%F JAC_1999__9_2_a2
Ruelle, David. Counting unbranched subgraphs. Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 157-160. http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a2/