Determination of ${msd}(L^n)$
Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 161-171.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The median stabilization degree (msd, for short) of a median algebra measures the largest possible number of steps needed to generate a subalgebra with an arbitrary set of generators. With computer assistance, we found that msd of the lattice - 1, 0, 1 4 equals 2. This value is of critical importance to determine msd of - 1, 0, 1n for all n $ge$ 5 and to determine msd of the free median algebra $lambda$(r) for almost all r $ge$ 5.
Keywords: distributive lattice, free median algebra, graphic cube, median operator, median stabilization degree
@article{JAC_1999__9_2_a1,
     author = {van de Vel, M.},
     title = {Determination of ${msd}(L^n)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a1/}
}
TY  - JOUR
AU  - van de Vel, M.
TI  - Determination of ${msd}(L^n)$
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 161
EP  - 171
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a1/
LA  - en
ID  - JAC_1999__9_2_a1
ER  - 
%0 Journal Article
%A van de Vel, M.
%T Determination of ${msd}(L^n)$
%J Journal of Algebraic Combinatorics
%D 1999
%P 161-171
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a1/
%G en
%F JAC_1999__9_2_a1
van de Vel, M. Determination of ${msd}(L^n)$. Journal of Algebraic Combinatorics, Tome 9 (1999) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/JAC_1999__9_2_a1/