Descents, quasi-symmetric functions, Robinson-Schensted for posets, and the chromatic symmetric function
Journal of Algebraic Combinatorics, Tome 10 (1999) no. 3, pp. 227-240.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate an apparent hodgepodge of topics: a Robinson-Schensted algorithm for (3 + 1)-free posets, Chung and Graham's G-descent expansion of the chromatic polynomial, a quasi-symmetric expansion of the path-cycle symmetric function, and an expansion of Stanley's chromatic symmetric function X $_{ G }$ in terms of a new symmetric function basis. We show how the theory of P-partitions (in particular, Stanley's quasi-symmetric function expansion of the chromatic symmetric function X $_{ G }$) unifies them all, subsuming two old results and implying two new ones. Perhaps our most interesting result relates to the still-open problem of finding a Robinson-Schensted algorithm for (3 + 1)-free posets. (Magid has announced a solution but it appears to be incorrect.) We show that such an algorithm ought to $ldquo$respect descents $rdquo$, and that the best partial algorithm so far-due to Sundquist, Wagner, and West-respects descents if it avoids a certain induced subposet.
Keywords: (3 + 1)-free poset, chromatic polynomial
@article{JAC_1999__10_3_a2,
     author = {Chow, Timothy Y.},
     title = {Descents, quasi-symmetric functions, {Robinson-Schensted} for posets, and the chromatic symmetric function},
     journal = {Journal of Algebraic Combinatorics},
     pages = {227--240},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__10_3_a2/}
}
TY  - JOUR
AU  - Chow, Timothy Y.
TI  - Descents, quasi-symmetric functions, Robinson-Schensted for posets, and the chromatic symmetric function
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 227
EP  - 240
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__10_3_a2/
LA  - en
ID  - JAC_1999__10_3_a2
ER  - 
%0 Journal Article
%A Chow, Timothy Y.
%T Descents, quasi-symmetric functions, Robinson-Schensted for posets, and the chromatic symmetric function
%J Journal of Algebraic Combinatorics
%D 1999
%P 227-240
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__10_3_a2/
%G en
%F JAC_1999__10_3_a2
Chow, Timothy Y. Descents, quasi-symmetric functions, Robinson-Schensted for posets, and the chromatic symmetric function. Journal of Algebraic Combinatorics, Tome 10 (1999) no. 3, pp. 227-240. http://geodesic.mathdoc.fr/item/JAC_1999__10_3_a2/