Lattice polytopes associated to certain Demazure modules of $sl_{n+1}$
Journal of Algebraic Combinatorics, Tome 10 (1999) no. 2, pp. 149-172.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let w be an element of the Weyl group of sl $_{ n + 1}$. We prove that for a certain class of elements w (which includes the longest element w $_{0}$ of the Weyl group), there exist a lattice polytope $Deltasub$ R $^{ l(w) }$, for each fundamental weight $ohgr _{i}$ of sl $_{ n + 1}$, such that for any dominant weight $lambda = sum_{ i = 1} ^{ n }$ a $_{ i }ohgr_{ i }$, the number of lattice points in the Minkowski sum $Delta _{w} ^$ lambda$ = sum_{ i = 1} ^{ n } a _{ i }Delta_{ i } ^{ w }$ is equal to the dimension of the Demazure module E $_{ w }( lambda)$. We also define a linear map A $^{ w }$ : R $^{ l(w) }rarrPotimes _{Z}$ R where $P$ denotes the weight lattice, such that char E $_{ w }( lambda) = e^{ $lambda$} sum$e ^- A(x) where the sum runs through the lattice points $x$ of $Delta _{ $lambda$}^{ w }$ .
Keywords: lattice polytope, Demazure module, Minkowski sum, character formula
@article{JAC_1999__10_2_a2,
     author = {Dehy, Raika and Yu, Rupert W.T.},
     title = {Lattice polytopes associated to certain {Demazure} modules of $sl_{n+1}$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {149--172},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__10_2_a2/}
}
TY  - JOUR
AU  - Dehy, Raika
AU  - Yu, Rupert W.T.
TI  - Lattice polytopes associated to certain Demazure modules of $sl_{n+1}$
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 149
EP  - 172
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__10_2_a2/
LA  - en
ID  - JAC_1999__10_2_a2
ER  - 
%0 Journal Article
%A Dehy, Raika
%A Yu, Rupert W.T.
%T Lattice polytopes associated to certain Demazure modules of $sl_{n+1}$
%J Journal of Algebraic Combinatorics
%D 1999
%P 149-172
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__10_2_a2/
%G en
%F JAC_1999__10_2_a2
Dehy, Raika; Yu, Rupert W.T. Lattice polytopes associated to certain Demazure modules of $sl_{n+1}$. Journal of Algebraic Combinatorics, Tome 10 (1999) no. 2, pp. 149-172. http://geodesic.mathdoc.fr/item/JAC_1999__10_2_a2/